Skip to content

async#

Running asyncio task in Databricks

Standard method to run asyncio task is as simple as asyncio.run(main()). But in Databricks, it is not that simple. With the same command, you will get the following error:

import asyncio
async def main():
    await asyncio.sleep(1)
asyncio.run(main())

RuntimeError: asyncio.run() cannot be called from a running event loop

Indeed, in Databricks, we've already in a running loop:

import asyncio
asyncio.get_running_loop()

<_UnixSelectorEventLoop running=True closed=False debug=False>

Getting all users from MS Graph API in few seconds

MS Graph API's endpoint for retrieving users, GET /users can return all users of the tenant. The default limit is 100 users per page, and the maximum limit is 999 users per page. If there are more than 999 users, the response will contain a @odata.nextLink field, which is a URL to the next page of users. For a big company having a large number of users (50,000, 100,000, or even more), and it can be time-consuming to retrieve all users.

While MS Graph API provides generous throttling limits, we should find a way to parallelize the queries. This post explores sharding as a strategy to retrieve all users in a matter of seconds. The idea is to get all users by dividing users based on the first character of the userPrincipalName field.For instance, shard 1 would encompass users whose userPrincipalName starts with a, shard 2 would handle users starting with b, and so forth.

Github Actions: copdips/get-azure-keyvault-secrets-action

Recently, I began a new project that requires migrating some process from Azure Pipelines to Github Actions. One of the tasks involves retrieving secrets from Azure Key Vault.

In Azure Pipelines, we have an official task called AzureKeyVault@2 designed for this purpose. However, its official counterpart in Github Actions, Azure/get-keyvault-secrets@v1, has been deprecated. The recommended alternative is Azure CLI. While Azure CLI is a suitable option, it operates in a bash shell without multithreading. If numerous secrets need to be fetched, this can be time-consuming.